5-2 Conservation of Momentum

According to the law of conservation of momentum, the total momentum in a system remains the same if no external forces act on the system. Consider the two types of collisions that can occur.

Vocabulary Elastic collision: A collision in which objects collide and bounce apart with no energy loss.

In an elastic collision, because momentum is conserved, the $m v$ before a collision for each of the two objects must equal the mv after the collision for each of the two objects. This is written as

$$
m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}=m_{1} v_{1 \mathrm{f}}+m_{2} v_{2 \mathrm{f}}
$$

The subscripts 1 and 2 refer to objects 1 and 2, respectively.

Vocabulary Inelastic collision: A collision in which objects collide and some mechanical energy is transformed into heat energy.

A common kind of inelastic collision is one in which the colliding objects stick together, or start out stuck together and then separate. However, in an inelastic collision the objects need not remain stuck together but may instead deform in some way.

Because momentum is also conserved in an inelastic collision, the $m v$ before the collision for each of the two objects must equal the $m v$ after the collision for each of the two objects. When objects are stuck together after the collision (assuming mass does not change), this equation becomes

$$
m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}=\left(m_{1}+m_{2}\right) v_{\mathrm{f}}
$$

where v_{f} is the combined final velocity of the two objects.

Solved Examples

Example 5: Tom and his twin brother Tim have a combined mass of 200.0 kg and are zooming along in a $100.0-\mathrm{kg}$ amusement park bumper car at $10.0 \mathrm{~m} / \mathrm{s}$.
They bump Melinda's car, which is sitting still. Melinda has a mass of 25.0 kg . After the elastic collision, the twins continue ahead with a speed of $4.12 \mathrm{~m} / \mathrm{s}$. How fast is Melinda's car bumped across the floor?

Solution: Notice that you must add the mass of the bumper car to the mass of the riders.

$$
\text { Given: } \left.\begin{array}{rlr}
m_{1}=300.0 \mathrm{~kg} & \begin{array}{l}
\text { Unknown: } v_{2 \mathrm{f}}=? \\
m_{2}=125.0 \mathrm{~kg} \\
v_{1 \mathrm{o}}=10.0 \mathrm{~m} / \mathrm{s}
\end{array} & \begin{array}{l}
\text { Original equation: } \\
v_{2 \mathrm{o}}
\end{array}=0 \mathrm{~m} / \mathrm{s} \\
v_{1 \mathrm{f}} & =4.12 \mathrm{~m} / \mathrm{s} & m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}=m_{1} v_{1 \mathrm{f}}+m_{2} v_{2 \mathrm{f}}
\end{array}\right\} \begin{array}{rlr}
\text { Solve: } v_{2 \mathrm{f}} & =\frac{m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}-m_{1} v_{1 \mathrm{f}}}{\mathrm{~m}_{2}} & \\
& =\frac{(300.0 \mathrm{~kg})(10.0 \mathrm{~m} / \mathrm{s})+(125.0 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})-(300.0 \mathrm{~kg})(4.12 \mathrm{~m} / \mathrm{s})}{125.0 \mathrm{~kg}} \\
& =\frac{3000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}+0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}-1236 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{125.0 \mathrm{~kg}}=\frac{1764 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{125.0 \mathrm{~kg}} \\
& =\mathbf{1 4 . 1 \mathbf { ~ m } / \mathrm { s }} &
\end{array}
$$

Example 6: Sometimes the curiosity factor at the scene of a car accident is so great that it actually produces secondary accidents as a result, while people watch to see what is going on. If an $800 .-\mathrm{kg}$ sports car slows to $13.0 \mathrm{~m} / \mathrm{s}$ to check out an accident scene and the $1200 .-\mathrm{kg}$ pick-up truck behind him continues traveling at $25.0 \mathrm{~m} / \mathrm{s}$, with what velocity will the two move if they lock bumpers after a rear-end collision?

Solution: Since the two vehicles lock bumpers, both objects have the same final velocity.

Given: $m_{1}=800 . \mathrm{kg} \quad$ Unknown: $v_{\mathrm{f}}=$?

$$
m_{2}=1200 . \mathrm{kg} \quad \text { Original equation: }
$$

$$
v_{1 \mathrm{o}}=13.0 \mathrm{~m} / \mathrm{s} \quad m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}=\left(m_{1}+m_{2}\right) v_{\mathrm{f}}
$$

$$
v_{2 \mathrm{o}}=25.0 \mathrm{~m} / \mathrm{s}
$$

Solve: $v_{\mathrm{f}}=\frac{m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}}{\left(m_{1}+m_{2}\right)}=\frac{(800 . \mathrm{kg})(13.0 \mathrm{~m} / \mathrm{s})+(1200 . \mathrm{kg})(25.0 \mathrm{~m} / \mathrm{s})}{(800 . \mathrm{kg}+1200 . \mathrm{kg})}$

$$
=\frac{10,400 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}+30,000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{2000 . \mathrm{kg}}=\mathbf{2 0 . 2} \mathrm{m} / \mathrm{s} \text { forward }
$$

Example 7: Charlotte, a $65.0-\mathrm{kg}$ skin diver, shoots a $2.0-\mathrm{kg}$ spear with a speed of $15 \mathrm{~m} / \mathrm{s}$ at a fish who darts quickly away without getting hit. How fast does Charlotte move backwards when the spear is shot?

Solution: To start, Charlotte and the spear are together and both are at rest.
Given: $m_{1}=65.0 \mathrm{~kg} \quad$ Unknown: $v_{1 \mathrm{f}}=$?
$m_{2}=2.0 \mathrm{~kg} \quad$ Original equation:
$v_{\mathrm{o}}=0 \mathrm{~m} / \mathrm{s} \quad\left(m_{1}+m_{2}\right) v_{\mathrm{o}}=m_{1} v_{1 \mathrm{f}}+m_{2} v_{2 \mathrm{f}}$
$v_{2 f}=15.0 \mathrm{~m} / \mathrm{s}$
Solve: $v_{1 f}=\frac{\left(m_{1}+m_{2}\right) v_{0}-m_{2} v_{2 f}}{m_{1}}$

$$
\begin{aligned}
& =\frac{(65.0 \mathrm{~kg}+2.0 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})-(2.0 \mathrm{~kg})(15 \mathrm{~m} / \mathrm{s})}{65.0 \mathrm{~kg}} \\
& =\frac{-30 . \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}}{65.0 \mathrm{~kg}}=-0.46 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Remember, the minus sign here is indicating direction. Therefore, Charlotte would travel with a speed of $0.46 \mathrm{~m} / \mathrm{s}$ in a direction opposite to that of the spear.

Practice Exercises

Exercise 7: Jamal is at the state fair playing some of the games. At one booth, he throws a $0.50-\mathrm{kg}$ ball forward with a velocity of $21.0 \mathrm{~m} / \mathrm{s}$ in order to hit a $0.20-\mathrm{kg}$ bottle sitting on a shelf, and when he makes contact the bottle goes flying forward at $30.0 \mathrm{~m} / \mathrm{s}$. a) What is the velocity of the ball after it hits the bottle? b) If the bottle were more massive, how would this affect the final velocity of the ball?
a) $v_{1 \mathrm{f}}=\left(m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}-m_{2} v_{2 \mathrm{f}}\right) / m_{1}$ $=[(0.50 \mathrm{~kg})(21.0 \mathrm{~m} / \mathrm{s})+(0.20 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})-(0.20 \mathrm{~kg})(30.0 \mathrm{~m} / \mathrm{s})] /(0.50 \mathrm{~kg})$ $=9.0 \mathrm{~m} / \mathrm{s}$
b) The ball's final velocity would be less.

Answer: a. $\quad 9.0 \mathrm{~m} / \mathrm{s}$
Answer: b. It would be less.
Exercise 8: Jeanne rolls a $7.0-\mathrm{kg}$ bowling ball down the alley for the league championship. One pin is still standing, and Jeanne hits it head-on with a velocity of $9.0 \mathrm{~m} / \mathrm{s}$. The $2.0-\mathrm{kg}$ pin acquires a forward velocity of $14.0 \mathrm{~m} / \mathrm{s}$. What is the new velocity of the bowling ball?
$v_{2 \mathrm{f}}=\left(m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}-m_{1} v_{1 \mathrm{f}}\right) / m_{2}$
$=[(2.0 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})+(7.0 \mathrm{~kg})(9.0 \mathrm{~m} / \mathrm{s})-(2.0 \mathrm{~kg})(14.0 \mathrm{~m} / \mathrm{s})] /(7.0 \mathrm{~kg})$
$=5.0 \mathrm{~m} / \mathrm{s}$

Answer: \qquad
Exercise 9: Running at $2.0 \mathrm{~m} / \mathrm{s}$, Bruce, the $45.0-\mathrm{kg}$ quarterback, collides with Biff, the $90.0-\mathrm{kg}$ tackle, who is traveling at $7.0 \mathrm{~m} / \mathrm{s}$ in the other direction. Upon collision, Biff continues to travel forward at $1.0 \mathrm{~m} / \mathrm{s}$. How fast is Bruce knocked backwards?

$$
\begin{aligned}
& v_{2 \mathrm{f}}=\left(m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}-m_{1} v_{1 \mathrm{f}}\right) / m_{2} \\
& =[(90.0 \mathrm{~kg})(7.0 \mathrm{~m} / \mathrm{s})+(45.0 \mathrm{~kg})(-2.0 \mathrm{~m} / \mathrm{s})-(90.0 \mathrm{~kg})(1.0 \mathrm{~m} / \mathrm{s})] /(45.0 \mathrm{~kg}) \\
& =\mathbf{1 0 . \mathbf { m } / \mathrm { s }}
\end{aligned}
$$

Answer: \qquad

Exercise 10: Anthony and Sissy are participating in the "Roll-a-Rama" rollerskating dance championship. While $75.0-\mathrm{kg}$ Anthony rollerskates backwards at $3.0 \mathrm{~m} / \mathrm{s}$, $60.0-\mathrm{kg}$ Sissy jumps into his arms with a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ in the same direction. a) How fast does the pair roll backwards together? b) If Anthony is skating toward Sissy when she jumps, would their combined final velocity be larger or smaller than your answer to part a? Why?
a) $v_{\mathrm{f}}=\left(m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}\right) /\left(m_{1}+m_{2}\right)$ $=[(75.0 \mathrm{~kg})(3.0 \mathrm{~m} / \mathrm{s})+(60.0 \mathrm{~kg})(5.0 \mathrm{~m} / \mathrm{s})] /(75.0 \mathrm{~kg}+60.0 \mathrm{~kg})=3.9 \mathrm{~m} / \mathrm{s}$
b) Smaller because their total momentum would be less.

Answer: a. $\quad 3.9 \mathrm{~m} / \mathrm{s}$
Answer: b. smaller
Exercise 11: To test the strength of a retainment wall designed to protect a nuclear reactor, a rocket-propelled F-4 Phantom jet aircraft was crashed head-on into a concrete barrier at high speed in Sandia, New Mexico, on April 19, 1988. The F-4 phantom had a mass of $19,100 \mathrm{~kg}$, while the retainment wall's mass was $469,000 \mathrm{~kg}$. The wall sat on a cushion of air that allowed it to move during impact. If the wall and F-4 moved together at $8.41 \mathrm{~m} / \mathrm{s}$ during the collision, what was the speed of the F-4 Phantom upon impact?

$$
\begin{aligned}
& v_{1 \mathrm{o}}=\left[\left(m_{1}+m_{2}\right) v_{\mathrm{f}}-m_{2} v_{2 \mathrm{o}}\right] / m_{1}=[(19,100 \mathrm{~kg}+469,000 \mathrm{~kg})(8.41 \mathrm{~m} / \mathrm{s})- \\
& (469,000 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})] /(19,100 \mathrm{~kg})=215 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: $\quad 215 \mathrm{~m} / \mathrm{s}$

Exercise 12: Valentina, the Russian Cosmonaut, goes outside her ship for a spacewalk, but when she is floating 15 m from the ship, her tether catches on a sharp piece of metal and is severed. Valentina tosses her $2.0-\mathrm{kg}$ camera away from the spaceship with a speed of $12 \mathrm{~m} / \mathrm{s}$. a) How fast will Valentina, whose mass is now 68 kg , travel toward the spaceship? b) Assuming the spaceship remains at rest with respect to Valentina, how long will it take her to reach the ship?
a) $v_{2 f}=\left[\left(m_{1}+m_{2}\right) v_{o}-m_{1} v_{1 f}\right] / m_{2}$
$=[(2.0 \mathrm{~kg}+68 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})-(2.0 \mathrm{~kg})(12 \mathrm{~m} / \mathrm{s})] /(68 \mathrm{~kg})=-0.35 \mathrm{~m} / \mathrm{s}$
or $0.35 \mathrm{~m} / \mathrm{s}$ in the opposite direction from the camera.
b) $\Delta t=\Delta d / v=(15 \mathrm{~m}) /(0.35 \mathrm{~m} / \mathrm{s})=43 \mathrm{~s}$

Answer: a. \qquad
Answer: b. 43 s

Exercise 13: A 620.-kg moose stands in the middle of the railroad tracks, frozen by the lights of an oncoming $10,000 .-\mathrm{kg}$ locomotive that is traveling at $10.0 \mathrm{~m} / \mathrm{s}$. The engineer sees the moose but is unable to stop the train in time and the moose rides down the track sitting on the cowcatcher. What is the new combined velocity of the locomotive and the moose?
$v_{\mathrm{f}}=\left(m_{1} v_{1 \mathrm{o}}+m_{2} v_{2 \mathrm{o}}\right) /\left(m_{1}+m_{2}\right)=$
$[(620 . \mathrm{kg})(0 \mathrm{~m} / \mathrm{s})+(10,000 . \mathrm{kg})(10.0 \mathrm{~m} / \mathrm{s})] /$
$(620 . \mathrm{kg}+10,000 . \mathrm{kg})=9.42 \mathrm{~m} / \mathrm{s}$

Answer: \qquad
Exercise 14: Lee is rolling along on her 4.0-kg skateboard with a constant speed of $3.0 \mathrm{~m} / \mathrm{s}$ when she jumps off the back and continues forward with a velocity of $2.0 \mathrm{~m} / \mathrm{s}$ relative to the ground. This causes the skateboard to go flying forward with a speed of $15.5 \mathrm{~m} / \mathrm{s}$ relative to the ground. What is Lee's mass?

$$
\begin{aligned}
& m_{2}=m_{1}\left(v_{1 \mathrm{f}}-v_{1 \mathrm{o}}\right) /\left(v_{2 \mathrm{o}}-v_{2 \mathrm{f}}\right) \\
& =(4.0 \mathrm{~kg})(15.5 \mathrm{~m} / \mathrm{s}-3.0 \mathrm{~m} / \mathrm{s}) /(3.0 \mathrm{~m} / \mathrm{s}-2.0 \mathrm{~m} / \mathrm{s})=\mathbf{5 0 .} \mathbf{~ k g}
\end{aligned}
$$

Answer: 50. kg

A-1:	Bernie, whose mass is 70.0 kg , leaves a ski jump with a velocity of $21.0 \mathrm{~m} / \mathrm{s}$. What is Bernie's momentum as he leaves the ski jump?
A-2:	Ethel is sitting on a park bench feeding the pigeons when a child's ball rolls toward her across the grass. Ethel returns the ball to the child by hitting it with her $2.0-\mathrm{kg}$ pocketbook with a speed of $20 \mathrm{~m} / \mathrm{s}$. If the impact lasts for 0.4 s , with what force does Ethel hit the ball?
A-3:	When Reggie stepped up to the plate and hit a $0.150-\mathrm{kg}$ fast ball traveling at $36.0 \mathrm{~m} / \mathrm{s}$, the impact caused the ball to leave his bat with a velocity of $45.0 \mathrm{~m} / \mathrm{s}$ in the opposite direction. If the impact lasted for 0.002 s , what force did Reggie exert on the baseball?
A-4:	The U.S. Army's parachuting team, the Golden Knights, are on a routine jumping mission over a deserted beach. On a jump, a $65-\mathrm{kg}$ Knight lands on the beach with a speed of $4.0 \mathrm{~m} / \mathrm{s}$, making a $0.20-\mathrm{m}$ deep indentation in the sand. With what average force did the parachuter hit the sand? (Read more about the Golden Knights at http://www.goldenknights.com)
A-5:	The late news reports the story of a shooting in the city. Investigators think that they have recovered the weapon and they run ballistics tests on the pistol at the firing range. If a $0.050-\mathrm{kg}$ bullet were fired from the handgun with a speed of $400 \mathrm{~m} / \mathrm{s}$ and it traveled 0.080 m into the target before coming to rest, what force did the bullet exert on the target?
A-6:	About 50,000 years ago, in an area located outside Flagstaff, Arizona, a giant $4.5 \times 10^{7}-\mathrm{kg}$ meteor fell and struck Earth, leaving a $180-\mathrm{m}-$ deep hole now known as Barringer crater. If the meteor was traveling at $20,000 \mathrm{~m} / \mathrm{s}$ upon impact, with what average force did the meteor hit the earth? (Read more about Barringer crater at http://www.barringercrater.com)
A-7:	In November 2007, astronaut Pam Melroy, history's second woman space shuttle commander, flew the space shuttle Discovery to the International Space Station to continue construction. To undock from the space station, Commander Melroy released hooks holding the two spacecraft together and the $76,700 \mathrm{~kg}$ shuttle pushed away from the space station with the aid of 4 large springs. a) If the $232,700 \mathrm{~kg}$ space station moved back at a speed of $0.50 \mathrm{~m} / \mathrm{s}$, how fast and in what direction did the space shuttle move? b) What is the relative speed of the two spacecraft as they separate? (Read more about astronaut Pam Melroy at http://www.jsc.nasa.gov/Bios/htmlbios/melroy.html)
A-8:	Tyrrell throws his $0.20-\mathrm{kg}$ football in the living room and knocks over his mother's $0.80-\mathrm{kg}$ antique vase. After the collision, the football bounces straight back with a speed of $3.9 \mathrm{~m} / \mathrm{s}$, while the vase is moving at $2.6 \mathrm{~m} / \mathrm{s}$ in the opposite direction. a) How fast did Tyrrell throw the football? b) If the football continued to travel at $3.9 \mathrm{~m} / \mathrm{s}$ in the same direction it was thrown, would the vase have to be more or less massive than 0.80 kg ?

A-9: \quad A 300.-kg motorboat is turned off as it approaches a dock and it coasts in toward the dock at $0.50 \mathrm{~m} / \mathrm{s}$. Isaac, whose mass is 62.0 kg , jumps off the front of the boat with a speed of $3.0 \mathrm{~m} / \mathrm{s}$ relative to the boat. What is the velocity of the boat after Isaac jumps?

A-10: \quad Miguel, the $72.0-\mathrm{kg}$ bullfighter, runs toward an angry bull at a speed of $4.00 \mathrm{~m} / \mathrm{s}$. The 550.-kg bull charges toward Miguel at $12.0 \mathrm{~m} / \mathrm{s}$ and Miguel must jump on the bull's back at the last minute to avoid being run over. What is the new velocity of Miguel and the bull as they move across the arena?

A-11: The U.S.S. Constitution, the oldest fully commissioned war ship in the world, is docked in Boston, Massachusetts. Also known as "Old Ironsides" for her seemingly impenetrable hull, the frigate houses 56 pieces of heavy artillery. Mounted on bearings that allow them to recoil at a speed of $1.30 \mathrm{~m} / \mathrm{s}$ are 20 carronades, each with a mass of 1000 . kg . If a carronade fires a $14.5-\mathrm{kg}$ cannonball straight ahead, with what muzzle velocity does the cannonball leave the cannon? (Read more about the U.S.S. Constitution at http:// www.ussconstitution.navy.mil)

Challenge Exercises for Further Study

B-1: \quad On a hot sumer afternoon, Keith and Nate are out fishing in their rowboat when they decide to jump into the water and go for a swim. Keith, whose mass is 65.0 kg , jumps straight off the front of the boat with a speed of $2.00 \mathrm{~m} / \mathrm{s}$ relative to the boat, while Nate propels his $68.0-\mathrm{kg}$ body simultaneously off the back of the boat at $4.00 \mathrm{~m} / \mathrm{s}$ relative to the boat. If the $100 .-\mathrm{kg}$ boat is initially traveling forward at $3.00 \mathrm{~m} / \mathrm{s}$, what is its velocity after both boys jump?

B-2: \quad Lilly, whose mass is 45.0 kg , is ice skating with a constant speed of $7.00 \mathrm{~m} / \mathrm{s}$ when she hits a rough patch of ice with a coefficient of friction of 0.0800 . How long will it take before Lilly coasts to a stop?

B-3: In a train yard, train cars are rolled down a long hill in order to link them up with other cars as shown. A car of mass $4000 . \mathrm{kg}$ starts to roll from rest at the top of a hill 5.0 m high, and inclined at an angle of 5.0° to the horizontal. The coefficient of rolling friction between the train and the track is 0.050 . What velocity would the car have if it linked up with 3 identical cars sitting on flat ground at the bottom of the track? (Hint: The equation for rolling friction is just like the one for sliding friction.)

